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Introduction  

Objectives 
Here we developed different temporal neural networks to
compare the performances of static vs. sequential image
classification of real-world walking environments in terms
of prediction accuracy, and computational and memory
storage requirements [1].

Results 
The 3D-CNN MoViNet network outperformed the 2D-CNN
encoders with LSTM backbones and the 2D-CNN baseline
model in terms of prediction accuracy, suggesting that
network architecture plays an important role in performance
besides simply the incorporation of temporal data.

Model Parameters GFLOPs Accuracy F1 NetScore FPS

MoViNet [2] 4.03 2.5 0.983 0.982 69.67 13.45

MobileViT - LSTM 3.36 9.84 0.970 0.968 64.28 17.55

MobileNet - LSTM 6.08 53.96 0.973 0.970 54.35 17.65

MobileNet - LSTM 
(seq2seq) - M2O 5.93 50.97 0.707 0.799 49.18 17.55

MobileNet - LSTM 
(seq2seq) - M2M 5.93 50.97 0.432 0.538 40.62 17.55

Baseline [1] 2.26 0.61 0.972 0.972 78.12 22.58

Discussion
In this study, we compared static vs. sequential image
classification of walking environments. Although 3D-CNN
networks achieve higher prediction accuracy compared to
2D-CNN encoders with LSTM backbones, they also have
higher computational and memory storage requirements,
which can be disadvantageous for robotic prosthetic legs
and exoskeletons using edge computing devices
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Figure 1. Comparison of model size,
number of operations, and prediction
accuracy. The 3D-CNN MoViNet model
achieved better accuracy with slightly
more FLOPs and parameters than the
state-of-the-art 2D-CNN baseline.
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Table 1. Confusion matrices on StairNet using different temporal neural networks.

Robotic prosthetic legs and exoskeletons require real-time
and accurate state estimation of the walking environment
for smooth transitions between different locomotion mode
controllers. However, previous studies have mainly been
limited to static image classification, therein ignoring the
temporal dynamics of human-robot walking.

Methods 
Building of ExoNet and StairNet, the large-scale datasets
of first-person videos of real-world walking environments,
we organized the data into sequences of images for four
classes, including level-ground terrain, incline stairs, and
transitions to and from incline stairs.

Sequential data requires specialized deep learning models
that account for temporal dynamics. We studied different
encoders, including VGG, EfficientNet, MobileNetV2, ViT,
and MobileViT, each coupled with a temporal long short-
term memory (LSTM) backbone. We also built and studied
MoViNet - a new video classification model designed for
mobile and embedded devices with limited computational
resources [2].

94.63 2.75 1.43 1.19

11.44 76.9 8.8 2.86

0.07 0.32 99.08 0.53

6.44 2.4 23.97 67.19

97.9 0.5 1.05 0.5

10.4 84.0 5.1 0.45

0.035 0.041 99.6 0.34

2.7 0.3 24.0 73.0

96.0 0.95 2.1 0.93

17.0 74.0 8.8 0.22

0.15 0.2 99.07 0.58

6.6 0.15 38.1 55.15

96.0 0.7 2.1 1.2

25.0 67.0 7.3 0.66

0.13 0.03 99.4 0.44

2.6 0.0 37.4 60.0

61.0 16.0 6.9 16.1

26.0 47.2 17.0 9.8

9.5 16.0 41.0 33.5

8.5 11.0 18.5 62.0

58.0 26.6 15.0 0.38

19.0 69.0 12.0 0.0

0.07 26.9 73.0 0.03

0.6 28.7 34.6 36.1

IS: 
40734 (9%)

IS-LG: 
7528 (2%)

LG: 
365218 (86%) 

LG-IS: 
12742 (3%)

Train split IS: 
2495
(8%)

IS-LG: 
588 (2%)

LG: 
28219 (87%)

LG-IS: 
1189 (3%)

Validation split

IS IS-LG LG LG-IS

IS: 4950
(9%)

IS-LG: 
909
(2%)

LG: 
48919 (86%)

LG-IS: 
1957 (3%)

Test split

View publication stats

mailto:brokoslaw.laschowski@uhn.ca
https://www.researchgate.net/publication/369785209

